• Bài trích
  • Mining top-k frequent sequential pattern in item interval extended sequence database /

Tác giả CN Trần, Huy Dương
Nhan đề Mining top-k frequent sequential pattern in item interval extended sequence database / Trần Huy Dương...
Thông tin xuất bản 2018.
Mô tả vật lý tr. 249-263
Tóm tắt Frequent sequential pattern mining in item interval extended sequence database (iSDB) has been one of interesting task in recent years. Unlike classic frequent sequential pattern mining, the pattern mining in iSDB also consider the item interval between successive items; thus, it may extract more meaningful sequential patterns in real life. Most previous frequent sequential pattern mining in iSDB algorithms needs a minimum support threshold (minsup) to perform the mining. However, it’s not easy for users to provide an appropriate threshold in practice. The too high minsup value will lead to missing valuable patterns, while the too low minsup value may generate too many useless patterns. To address this problem, we propose an algorithm: TopKWFP – Top-k weighted frequent sequential pattern mining in item interval extended sequence database. Our algorithm doesn’t need to provide a fixed minsup value, this minsup value will dynamically raise during the mining process
Đề mục chủ đề Sequential pattern
Thuật ngữ không kiểm soát Time
Thuật ngữ không kiểm soát Weighted
Thuật ngữ không kiểm soát Item interval
Thuật ngữ không kiểm soát Top-K
Thuật ngữ không kiểm soát Mô hình tuần tự
Thuật ngữ không kiểm soát Trọng số
Tác giả(bs) CN Nguyễn, Trường Thăng
Tác giả(bs) CN Trần, Thế Anh
Tác giả(bs) CN Vũ, Thị Đức
Nguồn trích Tạp chí Tin học và Điều khiển học- Vol.34, No 3
000 00000nab#a2200000ui#4500
00157070
0022
004CCED301B-D202-44DD-86F1-0600AA5EE81E
005202006301633
008081223s2018 vm| vie
0091 0
035|a1456386883
035|a1456386883
039|a20241129103047|bidtocn|c20241129102701|didtocn|y20191127091835|zthuvt
0410 |avie
044 |avm
1000 |aTrần, Huy Dương
24510|aMining top-k frequent sequential pattern in item interval extended sequence database / |cTrần Huy Dương...
260|c2018.
30010|atr. 249-263
520 |aFrequent sequential pattern mining in item interval extended sequence database (iSDB) has been one of interesting task in recent years. Unlike classic frequent sequential pattern mining, the pattern mining in iSDB also consider the item interval between successive items; thus, it may extract more meaningful sequential patterns in real life. Most previous frequent sequential pattern mining in iSDB algorithms needs a minimum support threshold (minsup) to perform the mining. However, it’s not easy for users to provide an appropriate threshold in practice. The too high minsup value will lead to missing valuable patterns, while the too low minsup value may generate too many useless patterns. To address this problem, we propose an algorithm: TopKWFP – Top-k weighted frequent sequential pattern mining in item interval extended sequence database. Our algorithm doesn’t need to provide a fixed minsup value, this minsup value will dynamically raise during the mining process
65010|aSequential pattern
6530 |aTime
6530 |aWeighted
6530 |aItem interval
6530 |aTop-K
6530 |aMô hình tuần tự
6530|aTrọng số
7000|aNguyễn, Trường Thăng
7000|aTrần, Thế Anh
7000|aVũ, Thị Đức
7730 |tTạp chí Tin học và Điều khiển học|gVol.34, No 3
890|a0|b0|c0|d0

Không có liên kết tài liệu số nào